numerical study of some nonlinear wave equations via chebyshev collocation method
نویسندگان
چکیده
the numerical methods are of great importance for approximating the solutions of nonlinear ordinary or partial differential equations, especially when the nonlinear differential equation under consideration faces difficulties in obtaining its exact solution. in this latter case, we usually resort to one of the efficient numerical methods. in this paper, the chebyshev collocation method is suggested to deal numerically with some nonlinear partial differential equations in mathematical physics.
منابع مشابه
Numerical Solution of Nonlinear Fredholm-Volterra Integtral Equations via Piecewise Constant Function by Collocation Method
The integral equation method is widely used for solving many problems in mathematical physics and engineering. This article proposes a computational method for solving nonlinear Fredholm-Volterra integral equations. Several numerical methods for approximating the solution of linear and nonlinear integral equations and specially FredholmVolterra integral equations are known [1-10]. Also, BlockPu...
متن کاملNumerical Solution of Some Nonlocal, Nonlinear Dispersive Wave Equations
We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usuall...
متن کاملSinc-Chebyshev Collocation Method for a Class of Fractional Diffusion-Wave Equations
This paper is devoted to investigating the numerical solution for a class of fractional diffusion-wave equations with a variable coefficient where the fractional derivatives are described in the Caputo sense. The approach is based on the collocation technique where the shifted Chebyshev polynomials in time and the sinc functions in space are utilized, respectively. The problem is reduced to the...
متن کاملGeneralized Chebyshev Collocation Method
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...
متن کاملRational Chebyshev Collocation Method for Solving Nonlinear Ordinary Differential Equations of Lane-emden Type
Lane-Emden equation is a nonlinear singular equation that plays an important role in the astrophysics. In this paper, we have applied the collocation method based on rational Chebyshev functions to solve Lane-Emden type equations. The method reduces solving the nonlinear ordinary differential equation to solving a system of nonlinear algebraic equations. The comparison of the results with the o...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of science and technology (sciences)ISSN 1028-6276
دوره 37
شماره 4 2013
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023